Human RANKL HEK293 Overexpression Lysate

Price:
Size:
Number:

Human RANKL HEK293 Overexpression Lysate: Product Information

Product Description
This Human RANKL overexpression lysate was created in HEK293 Cells and intented for use as a Western blot (WB) positive control. Purification of RANKL protein (Cat: 11682-H15H) from the overexpression lysate was verified.
Expression Host
HEK293 Cells
Species
Human
Sequence Information
A DNA sequence encoding the human TNFSF11 (O14788-2) (Gly 63-Asp 244) was expressed with the Fc region of rabbit IgG at the N-terminus.
Molecule Mass
The recombinant human TNFSF11 comprises 431 amino acids and has a predicted molecular mass of 47.9 kDa. The apparent molecular mass of the protein is approximately 56 kDa in SDS-PAGE under reducing conditions due to glycosylation.

Human RANKL HEK293 Overexpression Lysate: Usage Guide

Preparation Method
Cell lysate was prepared by homogenization of the over-expressed cells in ice-cold modified RIPA Lysis Buffer with cocktail of protease inhibitors (Sigma). Cell debris was removed by centrifugation. Protein concentration was determined by Bradford assay (Bio-Rad protein assay, Microplate Standard assay). The cell lysate was boiled for 5 min in 1 x SDS loading buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 5% b-mercaptoethanol, and lyophilized.
Lysis Buffer
Modified RIPA Lysis Buffer: 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1% SDS, 1% Sodium deoxycholate, 1mM PMSF.
Recommend Usage
1.  Centrifuge the tube for a few seconds and ensure the pellet at the bottom of the tube. 2.  Re-dissolve the pellet using 200μL pure water and boil for 2-5 min.
Sample Buffer
1 X Sample Buffer (1 X modified RIPA buffer+1 X SDS loading buffer).
Stability & Storage
Store at 4℃ for up to twelve months from date of receipt. After re-dissolution, aliquot and store at -80℃ for up to twelve months. Avoid repeated freeze-thaw cycles.
Application
Western Blot (WB)
Optimal dilutions/concentrations should be determined by the end user.

Human RANKL HEK293 Overexpression Lysate: Alternative Names

Human CD254 Overexpression Lysate; Human hRANKL2 Overexpression Lysate; Human ODF Overexpression Lysate; Human OPGL Overexpression Lysate; Human OPTB2 Overexpression Lysate; Human RANKL Overexpression Lysate; Human sOdf Overexpression Lysate; Human TRANCE Overexpression Lysate

RANKL Background Information

Tumor necrosis factor ligand superfamily member 11, also known as Receptor activator of nuclear factor kappa-B ligand, Osteoprotegerin ligand, TNFSF11, RANKL, TRANCE, OPGL and CD254, is a single-pass type II membrane protein which belongs to the tumor necrosis factor family. The receptor activator of nuclear factor-kappaB ligand (RANKL), its cognate receptor RANK, and its natural decoy receptor osteoprotegerin have been identified as the final effector molecules of osteoclastic bone resorption. RANK and RANKL are key regulators of bone remodeling and regulate T cell/dendritic cell communications, and lymph node formation. Moreover, RANKL and RANK are expressed in mammary gland epithelial cells and control the development of a lactating mammary gland during pregnancy. Genetically, RANKL and RANK are essential for the development and activation of osteoclasts and bone loss in response to virtually all triggers tested. Inhibition of RANKL function via the natural decoy receptor osteoprotegerin (OPG, TNFRSF11B) prevents bone loss in postmenopausal osteoporosis and cancer metastases. Importantly, RANKL appears to be the pathogenetic principle that causes bone and cartilage destruction in arthritis. RANK-RANKL signaling not only activates a variety of downstream signaling pathways required for osteoclast development, but crosstalk with other signaling pathways also fine-tunes bone homeostasis both in normal physiology and disease. In addition, RANKL and RANK have essential roles in lymph node formation, establishment of the thymic microenvironment, and development of a lactating mammary gland during pregnancy.
Full Name
tumor necrosis factor (ligand) superfamily, member 11
References
  • Takayanagi H, et al. (2002) Signaling crosstalk between RANKL and interferons in osteoclast differentiation. Arthritis Res. 4 Suppl 3: S227-32.
  • Nakashima T, et al. (2003) RANKL and RANK as novel therapeutic targets for arthritis. Curr Opin Rheumatol. 15(3): 280-7.
  • Schwarz EM, et al. (2007) Clinical development of anti-RANKL therapy. Arthritis Res Ther. 9 Suppl 1: S7.
  • Leibbrandt A, et al. (2008) RANK/RANKL: regulators of immune responses and bone physiology. Ann N Y Acad Sci. 1143: 123-50.
Add to Cart Successfully Add to Cart Failed Shopping cart is being updated, please wait U.S.A.