Human BMPR2 HEK293 Overexpression Lysate

Price:
Size:
Number:

Human BMPR2 HEK293 Overexpression Lysate: Product Information

Product Description
This Human BMPR2 overexpression lysate was created in HEK293 Cells and intented for use as a Western blot (WB) positive control. Purification of BMPR2 protein (Cat: 10551-H08H) from the overexpression lysate was verified.
Expression Host
HEK293 Cells
Species
Human
Sequence Information
A DNA sequence encoding the human BMPR-II (NP_001195.2) extracellular domain (Met 1-Ile 151) was expressed with a C-terminal polyhistidine tag.
Molecule Mass
The recombinant human BMPR-II consists of 136 amino acids and has a predicted molecular mass of 15.6 kDa. As a result of glycosylation, the apparent molecular mass of rhBMPR-II is approximately 30-40 kDa in SDS-PAGE under reducing conditions.

Human BMPR2 HEK293 Overexpression Lysate: Usage Guide

Preparation Method
Cell lysate was prepared by homogenization of the over-expressed cells in ice-cold modified RIPA Lysis Buffer with cocktail of protease inhibitors (Sigma). Cell debris was removed by centrifugation. Protein concentration was determined by Bradford assay (Bio-Rad protein assay, Microplate Standard assay). The cell lysate was boiled for 5 min in 1 x SDS loading buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 5% b-mercaptoethanol, and lyophilized.
Lysis Buffer
Modified RIPA Lysis Buffer: 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1% SDS, 1% Sodium deoxycholate, 1mM PMSF.
Recommend Usage
1.  Centrifuge the tube for a few seconds and ensure the pellet at the bottom of the tube. 2.  Re-dissolve the pellet using 200μL pure water and boil for 2-5 min.
Sample Buffer
1 X Sample Buffer (1 X modified RIPA buffer+1 X SDS loading buffer).
Stability & Storage
Store at 4℃ for up to twelve months from date of receipt. After re-dissolution, aliquot and store at -80℃ for up to twelve months. Avoid repeated freeze-thaw cycles.
Application
Western Blot (WB)
Optimal dilutions/concentrations should be determined by the end user.

Human BMPR2 HEK293 Overexpression Lysate: Alternative Names

Human BMPR-II Overexpression Lysate; Human BMPR3 Overexpression Lysate; Human BMR2 Overexpression Lysate; Human BRK-3 Overexpression Lysate; Human POVD1 Overexpression Lysate; Human PPH1 Overexpression Lysate; Human T-ALK Overexpression Lysate

BMPR2 Background Information

The bone morphogenetic protein type II receptor (BMPR-II, or BMPR2), a receptor for the transforming growth factor (TGF)-beta/bone morphogenetic protein (BMP) superfamily. Reduced expression or function of BMPR2 signaling leads to exaggerated TGF-beta signaling and altered cellular responses to TGF-beta. In endothelial cells, BMPR2 mutation increases the susceptibility of cells to apoptosis. BMPR2 transduces BMP signals by forming heteromeric complexes with and phosphorylating BMP type I receptors. The intracellular domain of BMPR2 is both necessary and sufficient for receptor complex interaction. It had been identified that BMPR2 plays a key role in cell growth. Its mutations lead to hereditary pulmonary hypertension, and knockout of Bmpr-II results in early embryonic lethality. The C-terminal tail of BMPR2 provides binding sites for a number of regulatory proteins that may initiate Smad-independent signalling. BMPR2 mutations were predicted to alter the BMP and TGF-b1/SMAD signalling pathways, resulting in proliferation rather than apoptosis of vascular cells, and greatly increase the risk of developing severe pulmonary arterial hypertension. BMPR2 gene result in familial Primary pulmonary hypertension (PPH) transmitted as an autosomal dominant trait, albeit with low penetrance. Heterozygous germline mutations of BMPR2 gene have been identified in patients with familial and sporadic PPH, indicating that BMPR2 may contribute to the maintenance of normal pulmonary vascular structure and function. Tctex-1, a light chain of the motor complex dynein, interacts with the cytoplasmic domain of BMPR2 and demonstrate that Tctex-1 is phosphorylated by BMPR-II, a function disrupted by PPH disease causing mutations within exon 12. BMPR2 and Tctex-1 co-localize to endothelium and smooth muscle within the media of pulmonary arterioles, key sites of vascular remodelling in PPH.
Full Name
bone morphogenetic protein receptor, type II (serine/threonine kinase)
References
  • Machado RD, et al. (2003) Functional interaction between BMPR-II and Tctex-1, a light chain of Dynein, is isoform-specific and disrupted by mutations underlying primary pulmonary hypertension. Hum Mol Genet. 12(24): 3277-86.
  • Abramowicz MJ, et al. (2003) Primary pulmonary hypertension after amfepramone (diethylpropion) with BMPR2 mutation. Eur Respir J. 22(3): 560-2.
  • Hassel S, et al. (2004) Proteins associated with type II bone morphogenetic protein receptor (BMPR-II) and identified by two-dimensional gel electrophoresis and mass spectrometry. Proteomics. 4(5): 1346-58.
  • Beppu H, et al. (2005) Generation of a floxed allele of the mouse BMP type II receptor gene. Genesis. 41(3): 133-7.
  • Morrell NW. (2006) Pulmonary hypertension due to BMPR2 mutation: a new paradigm for tissue remodeling? Proc Am Thorac Soc. 3(8): 680-6.
  • Nasim MT, et al. (2008) Stoichiometric imbalance in the receptor complex contributes to dysfunctional BMPR-II mediated signalling in pulmonary arterial hypertension. Hum Mol Genet. 217(11): 1683-94.
Add to Cart Successfully Add to Cart Failed Shopping cart is being updated, please wait U.S.A.